Муниципальное бюджетное общеобразовательное учреждение «Коммунарская средняя общеобразовательная школа №3»

ПРИНЯТА	УТВЕРЖДЕНА			
на заседании педагогического совета	директором МБОУ «Коммунарская СОШ № 3»			
от 26 августа 2020г	Шагай Л.А.			
Протокол № 1	приказ от 01.09.2020г № 151-ОД			

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА технической направленности

«3d - моделирование»

10 класс

Составитель-разработчик: Рогачев Евгений Васильевич, учитель технологии и информатики, педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «3D - моделирование» (далее Программа) имеет техническую направленность.

Программа составлена на основании:

- Федерального закона от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации» в действующей редакции;
- Постановления Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 № 189 «Об утверждении СанПиН 2.4.2.2821 -10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;
- Письма Министерства образования и науки Российской Федерации от 12 мая 2011 г. № 03-296 «Об организации внеурочной деятельности при введении Федерального образовательного стандарта общего образования»;
- Письма Министерства просвещения РФ от 7 мая 2020 г. № ВБ-976/04 "О реализации курсов внеурочной деятельности, программ воспитания и социализации, дополнительных общеразвивающих программ с использованием дистанционных образовательных технологий";
- Устав ОУ, свидетельство о государственной регистрации.
- 3D моделирование прогрессивная отрасль мультимедиа, позволяющая осуществлять процесс создания трехмерной модели объекта при помощи специальных компьютерных программ. Моделируемые объекты выстраиваются на основе чертежей, рисунков, подробных описаний и другой информации.

Уровень Программы – базовый.

Актуальность программы.

Программа имеет целью знакомство обучающихся с 3D-графикой. 3D-моделирование — прогрессивная отрасль мультимедиа, позволяющая осуществлять процесс создания трехмерной модели объекта при помощи специальных компьютерных программ. Моделируемые объекты выстраиваются на основе чертежей, рисунков, подробных описаний и другой информации.

Практические задания интересны и часто непросты в решении, что позволяет повысить учебную мотивацию учащихся и развитие творческих способностей. Технологии, используемые в организации учебного процесса в кружке, деятельностно-ориентированные. Основой проведения занятий служат проектно-исследовательские технологии.

Таким образом, данный курс способствует развитию познавательной активности обучающихся; творческого и операционного мышления; повышению интереса к информатике. Актуальность программы заключается в том, что она связана с процессом информатизации и необходимостью для каждого человека овладеть новейшими информационными технологиями для адаптации в современном обществе и реализации в полной мере своего творческого потенциала. Результаты технической фантазии всегда стремились вылиться на бумагу, а затем и воплотиться в жизнь. Если раньше, представить то, как будет выглядеть дом или интерьер комнаты, автомобиль или теплоход мы могли лишь по чертежу или рисунку, то с появлением компьютерного трехмерного моделирования стало возможным создать объемное изображение спроектированного сооружения. Оно отличается фотографической точностью и позволяет лучше представить себе, как будет выглядеть проект, воплощенный в жизни и своевременно внести определенные коррективы. 3D модель обычно производит гораздо большее впечатление,

чем все остальные способы презентации будущего проекта. Передовые технологии позволяют добиваться потрясающих (эффективных) результатов.

Программа ориентирована на систематизацию знаний и умений по курсу информатики в части изучения информационного моделирования. Программа посвящена изучению основ создания моделей 3 средствами редактора трехмерной графики Blender.

Курс призван развить умения использовать трехмерные графические представления информации в процессе обучения, предназначен для прикладного использования обучающимися в их дальнейшей учебной деятельности. Программа ориентирована на изучение принципов проектирования и 3D - моделирования для создания и практического изготовления отдельных элементов технических проектов обучающихся и тем самым способствует развитию конструкторских, изобретательских, научно - технических компетентностей, и нацеливает учащихся на осознанный выбор необходимых обществу профессий, таких как инженер - конструктор, инженер - технолог, проектировщик, дизайнер и т.д.

Новизна и отличительные особенности программы состоят в том, что работа с 3D графикой – одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не, только профессиональные художники и дизайнеры. В наше время трехмерной картинкой уже никого не удивишь. Однако печать 3D моделей на современном оборудовании — дело новое. Обучающиеся осваивают азы трехмерного моделирования достаточно быстро и начинают применять свои знания на практике. В программе реализуется возможность обучения 3D графике в программном обеспечении, находящемся в свободном доступе, в 3D графическом редакторе.

Педагогическая целесообразность заключается в том, что данная программа позволяет выявить заинтересованных обучающихся, проявивших интерес к знаниям, оказать им помощь в формировании устойчивого интереса к построению моделей с помощью 3D-принтера. Материал курса излагается с учетом возрастных особенностей учащихся и уровня их знаний. Занятия построены как система тщательно подобранных упражнений и заданий, ориентированных на межпредметные связи.

Цель и задачи Программы

Цель — формирование и развитие у обучающихся интеллектуальных и практических компетенций в области создания пространственных моделей, освоение элементов основных базовых навыков по трёхмерному моделированию.

Задачи Программы

Обучающие:

- формирование базовых понятий и практических навыков в области 3D моделирования и печати;
 - знакомство со средствами создания трехмерной графики;
 - обучение созданию и редактированию 3D объектов;
 - формирование базовых знаний в области трехмерной компьютерной графики.

Развивающие:

- вовлечение в научно техническое творчество;
- приобщение к новым технологиям, способным помочь обучающимся в реализации собственного творческого потенциала;
- развитие образного, абстрактного, аналитического мышления, творческого и познавательного потенциала обучающихся;
 - развитие навыков творческой деятельности;

• формирование навыков работы в проектных технологиях; формирование информационной культуры обучающихся.

Воспитательные:

- формирование устойчивого интереса обучающихся к техническому творчеству;
- формирование у обучающихся интереса к моделированию и конструированию;
- воспитание настойчивости и стремления к достижению поставленной цели;
- создание условий для повышения самооценки обучающегося, реализации его как личности

Адресат программы

Рабочая программа предназначена для обучающихся 10 класса.

Объем и срок освоения программы

Программа рассчитана на 1 год обучения. Общее количество часов программы – 34 часа.

Форма обучения: очная.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремлённости, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- формирование коммуникативной компетентности в общении и сотрудничестве с другими обучающимися.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- умение принимать и сохранять учебную задачу;
- умение планировать последовательность шагов алгоритма для достижения цели;
- умение ставить цель (создание творческой работы), планировать достижение этой цели;
- умение осуществлять итоговый и пошаговый контроль по результату;
- способность адекватно воспринимать оценку наставника и других обучающихся;
- умение различать способ и результат действия;
- умение вносить коррективы в действия в случае расхождения результата решения задачи на основе её оценки и учёта характера сделанных ошибок;
- умение в сотрудничестве ставить новые учебные задачи;
- способность проявлять познавательную инициативу в учебном сотрудничестве;
- умение осваивать способы решения проблем творческого характера в жизненных ситуациях;

 умение оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

- умение осуществлять поиск информации в индивидуальных информационных архивах обучающегося, информационной среде образовательного учреждения, федеральных хранилищах информационных образовательных ресурсов;
- умение использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- умение ориентироваться в разнообразии способов решения задач;
- умение осуществлять анализ объектов с выделением существенных и несущественных признаков;
- умение проводить сравнение, классификацию по заданным критериям;
- умение строить логические рассуждения в форме связи простых суждений об объекте;
- умение устанавливать аналогии, причинно-следственные связи;
- умение моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- умение синтезировать, составлять целое из частей, в том числе самостоятельно достраивать с восполнением недостающих компонентов.

Коммуникативные универсальные учебные действия:

- умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- умение выслушивать собеседника и вести диалог;
- способность признавать возможность существования различных точек зрения и право каждого иметь свою;
- умение планировать учебное сотрудничество с наставником и другими обучающимися: определять цели, функции участников, способы взаимодействия;
- умение осуществлять постановку вопросов: инициативное сотрудничество в поиске и сборе информации;
- умение разрешать конфликты: выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владение монологической и диалогической формами речи.

Предметные результаты

В результате освоения программы обучающиеся должны

<u>знать</u>:

правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием.

<u>уметь</u>:

 применять на практике методики генерирования идей; методы дизайн-анализа и дизайн-исследования;

- анализировать формообразование промышленных изделий;
- строить изображения предметов по правилам линейной перспективы;
- передавать с помощью света характер формы;
- различать и характеризовать понятия: пространство, ракурс, воздушная перспектива;
- получать представления о влиянии цвета на восприятие формы объектов дизайна;
- применять навыки формообразования, использования объёмов в дизайне (макеты из бумаги, картона);
- работать с программами трёхмерной графики (Autodesk «Tinkercad»);
- описывать технологическое решение с помощью текста, рисунков, графического изображения;
- анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- оценивать условия применимости технологии, в том числе с позиций экологической защищённости;
- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности;
- оценивать коммерческий потенциал продукта и/или технологии;
- проводить оценку и испытание полученного продукта;
- представлять свой проект.

владеть:

— научной терминологией, ключевыми понятиями, методами и приёмами проектирования, конструирования, моделирования, макетирования, прототипирования в области промышленного (индустриального) дизайна.

Смежные предметы

Математика

Статистика и теория вероятностей

Ученик научится:

- представлять данные в виде таблиц, диаграмм;
- читать информацию, представленную в виде таблицы, диаграммы.

В повседневной жизни и при изучении других предметов ученик сможет научиться:

• извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Геометрия

Геометрические фигуры

Ученик научится:

• оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов ученик сможет научиться:

• решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

Ученик научится:

выполнять измерение длин, расстояний, величин углов с помощью инструментов для измерений длин и углов.

Физика

Ученик научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы интернета.

Информатика

Ученик научится:

- различать виды информации по способам её восприятия человеком и по способам ее представления на материальных носителях;
- приводить примеры информационных процессов (процессов, связанных с хранением, преобразованием и передачей данных) в живой природе и технике;
 - классифицировать средства ИКТ в соответствии с кругом выполняемых задач.

Математические основы информатики

Ученик получит возможность научиться:

• познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием.

Использование программных систем и сервисов

Ученик научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы).

Ученик овладеет (как результат применения программных систем и интернетсервисов в данном курсе и во всём образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
 - различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом.

Ученик получит возможность (в данном курсе и иной учебной деятельности):

- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;

- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);
 - познакомиться с примерами использования ИКТ в современном мире;
- получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.

Технология

Формирование технологической культуры и проектно-технологического мышления обучающихся

Ученик научится:

- следовать технологии, в том числе в процессе изготовления субъективно нового продукта;
- оценивать условия применимости технологии в том числе с позиций экологической защищённости;
- прогнозировать по известной технологии выходы (характеристики продукта) в зависимости от изменения входов/параметров/ресурсов, проверять прогнозы опытно-экспериментальным путём, в том числе самостоятельно планируя такого рода эксперименты;
- в зависимости от ситуации оптимизировать базовые технологии (затратность качество), проводить анализ альтернативных ресурсов, соединять в единый план несколько технологий без их видоизменения для получения сложносоставного материального или информационного продукта;
- проводить оценку и испытание полученного продукта;
- проводить анализ потребностей в тех или иных материальных или информационных продуктах;
- описывать технологическое решение с помощью текста, рисунков, графического изображения;
- анализировать возможные технологические решения, определять их достоинства и недостатки в контексте заданной ситуации;
- проводить и анализировать разработку и/или реализацию прикладных проектов, предполагающих:
- определение характеристик и разработку материального продукта, включая его моделирование в информационной среде (конструкторе),
 - встраивание созданного информационного продукта в заданную оболочку,
 - изготовление информационного продукта по заданному алгоритму в заданной оболочке;
- проводить и анализировать разработку и/или реализацию технологических проектов, предполагающих:
 - оптимизацию заданного способа (технологии) получения требующегося материального продукта (после его применения в собственной практике),
 - разработку (комбинирование, изменение параметров и требований к ресурсам) технологии получения материального и информационного продукта с заданными свойствами;

- проводить и анализировать разработку и/или реализацию проектов, предполагающих:
 - планирование (разработку) материального продукта в соответствии с задачей собственной деятельности (включая моделирование и разработку документации),
 - планирование (разработку) материального продукта на основе самостоятельно проведённых исследований потребительских интересов.

Ученик получит возможность научиться:

- выявлять и формулировать проблему, требующую технологического решения;
- модифицировать имеющиеся продукты в соответствии с ситуацией/заказом/потребностью/задачей деятельности и в соответствии с их характеристиками разрабатывать технологию на основе базовой технологии;
- технологизировать свой опыт, представлять на основе ретроспективного анализа и унификации деятельности описание в виде инструкции или технологической карты.

Формы подведения итогов реализации программы

Подведение итогов реализуется в рамках презентации и защиты результатов выполнения кейсов, представленных в программе.

Формы демонстрации результатов обучения

Представление результатов образовательной деятельности пройдёт в форме публичной презентации решений кейсов командами и последующих ответов выступающих на вопросы наставника и других команд.

Формы диагностики результатов обучения

Беседа, тестирование, опрос.

2. СОДЕРЖАНИЕ ПРОГРАММЫ

Программа предполагает постепенное расширение знаний и их углубление, а также приобретение умений в области проектирования, конструирования и изготовления прототипа продукта.

Занятия предполагают развитие личности:

- •развитие интеллектуального потенциала обучающегося (анализ, синтез, сравнение);
- •развитие практических умений и навыков (эскизирование, конструирование, макетирование, прототипирование, презентация).

Учебно-воспитательный процесс направлен на формирование и развитие у обучающихся таких важных социально значимых качеств, как готовность к нравственному самоопределению, стремление к сохранению и приумножению технических, культурных и исторических ценностей. Становление личности через творческое самовыражение.

1. Кейс «Объект из будущего»

Знакомство с методикой генерирования идей с помощью карты ассоциаций. Применение методики на практике. Генерирование оригинальной идеи проекта.

1.1 Формирование команд. Построение карты ассоциаций на основе социального и технологического прогнозов будущего. Формирование идей на базе многоуровневых ассоциаций. Проверка идей с помощью сценариев развития и

- 1.2 Изучение основ скетчинга: инструментарий, постановка руки, понятие перспективы, построение простых геометрических тел. Фиксация идеи проекта в технике скетчинга. Презентация идеи продукта группой.
- 1.3 Создание макета из бумаги, картона и ненужных предметов. Упаковка объекта, имитация готового к продаже товара. Презентация проектов по группам.
- 1.4 Изучение основ скетчинга: понятие света и тени; техника передачи объёма. Создание подробного эскиза проектной разработки в технике скетчинга.

2. Кейс «Пенал»

Понятие функционального назначения промышленных изделий. Связь функции и формы в промышленном дизайне. Анализ формообразования (на примере школьного пенала). Развитие критического мышления, выявление неудобств в пользовании промышленными изделиями. Генерирование идей по улучшению промышленного изделия. Изучение основ макетирования из бумаги и картона. Представление идеи проекта в эскизах и макетах.

- 2.1 Формирование команд. Анализ формообразования промышленного изделия на примере школьного пенала. Сравнение разных типов пеналов (для сравнения используются пеналы обучающихся), выявление связи функции и формы.
- 2.2 Выполнение натурных зарисовок пенала в технике скетчинга.
- 2.3 Выявление неудобств в пользовании пеналом. Генерирование идей по улучшению объекта. Фиксация идей в эскизах и плоских макетах.
- 2.4 Создание действующего прототипа пенала из бумаги и картона, имеющего принципиальные отличия от существующего аналога.
- 2.5 Испытание прототипа. Внесение изменений в макет. Презентация проекта перед аудиторией.

3. Кейс «Космическая станция»

Знакомство с объёмно-пространственной композицией на примере создания трёхмерной модели космической станции.

- 3.1 Понятие объёмно-пространственной композиции в промышленном дизайне на примере космической станции. Изучение модульного устройства космической станции, функционального назначения модулей.
- 3.2 Основы 3D-моделирования: знакомство с интерфейсом программы Autodesk «Tinkercad», освоение проекций и видов, изучение набора команд и инструментов.
- 3.3 Создание трёхмерной модели космической станции в программе Autodesk «Tinkercad».
- 3.4 Изучение основ визуализации в программе Autodesk «Tinkercad», настройки параметров сцены. Визуализация трёхмерной модели космической станции.

4. Кейс «Как это устроено?»

Изучение функции, формы, эргономики, материала, технологии изготовления, принципа функционирования промышленного изделия.

4.1 Формирование команд. Выбор промышленного изделия для дальнейшего изучения. Анализ формообразования и эргономики промышленного изделия.

- 4.2 Изучение принципа функционирования промышленного изделия. Разбор промышленного изделия на отдельные детали и составные элементы. Изучение внутреннего устройства.
- 4.3 Подробная фотофиксация деталей и элементов промышленного изделия.
- 4.4 Подготовка материалов для презентации проекта (фото- и видеоматериалы).
- 4.5 Создание презентации. Презентация результатов исследования перед аудиторией.

5. Кейс «Механическое устройство»

Изучение на практике и сравнительная аналитика механизмов набора LEGO Education. Проектирование объекта, решающего насущную проблему, на основе одного или нескольких изученных механизмов.

- 5.1 Введение: демонстрация и диалог на тему устройства различных механизмов и их применения в жизнедеятельности человека.
- 5.2 Сборка выбранного на прошлом занятии механизма с использованием инструкции из набора и при минимальной помощи наставника.
 - 5.3 Демонстрация работы собранных механизмов и комментарии, принципа их работы. Сессия вопросов-ответов, комментарии наставника.
 - 5.4 Введение в метод мозгового штурма. Сессия мозгового штурма с генерацией идей устройств, решающих насущную проблему, в основе которых лежит принцип работы выбранного механизма.
 - 5.5 Отбираем идеи, фиксируем в ручных эскизах.
 - 5.6 3D-моделирование объекта в Autodesk «Tinkercad».
 - 5.7 3D-моделирование объекта в Autodesk «Tinkercad», сборка материалов для презентации.
 - 5.8 Выбор и присвоение модели материалов. Настройка сцены. Рендеринг.
 - 5.9 Сборка презентации, подготовка защиты.
 - 5.10 Защита командами проектов.

3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/п	Название раздела, темы	Количество часов			Формы контроля
		Всего	Теория	Практика	,
1	Кейс «Объект из будущего»	6	2	4	Презентация результатов
1.1	Введение. Методики формирования идей	2	1	1	
1.2	Урок рисования (перспектива, линия, штриховка)	1		1	
1.3	Создание прототипа объекта промышленного дизайна	2	1	1	
1.4	Урок рисования (способы передачи объёма, светотень)	1		1	

2	Кейс «Пенал»	6	1	5	Презентация результатов
2.1	Анализ формообразования промышленного изделия	1		1	
2.2	Натурные зарисовки промышленного изделия	1		1	
2.3	Генерирование идей по улучшению промышленного изделия	1		1	
2.4	Создание прототипа промышленного изделия из бумаги и картона	2	1	1	
2.5	Испытание прототипа. Презентация проекта перед аудиторией	1		1	
3	Кейс «Космическая станция»	6	1	5	Презентация результатов
3.1	Создание эскиза объёмно-пространственной композиции	1		1	
3.2	Урок 3D-моделирования (Autodesk «Tinkercad».)	3	1	2	
3.3	Создание объёмно- пространственной композиции в программе Autodesk «Tinkercad».	1		1	
3.4	Основы визуализации в программе Autodesk «Tinkercad».	1		1	
4	Кейс «Как это устроено?»	6	2	4	Презентация результатов
4.1	Изучение функции, формы, эргономики промышленного изделия	1	1		
4.2	Изучение устройства и принципа функционирования промышленного изделия	1	1		
4.3	Фотофиксация элементов промышленного изделия	1		1	

4.4	Подготовка материалов для презентации проекта	1		1	
4.5	Создание презентации	2		2	
5	Кейс «Механическое устройство»	10	1	9	Презентация результатов
5.1	Введение: демонстрация механизмов, диалог	1	1		
5.2	Сборка механизмов из набора LEGO Education	1		1	
5.3	Демонстрация механизмов, сессия вопросов-ответов	1		1	
5.4	Мозговой штурм	1		1	
5.5	Выбор идей. Эскизирование	1		1	
5.6	3D-моделирование	1		1	
5.7	3D-моделирование, сбор материалов для презентации	1		1	
5.8	Рендеринг	1		1	
5.9	Создание презентации, подготовка защиты	1		1	
5.10	Защита проектов	1		1	
Всего	учасов:	34	7	27	